26 research outputs found

    Towards Inferring Mechanical Lock Combinations using Wrist-Wearables as a Side-Channel

    Full text link
    Wrist-wearables such as smartwatches and fitness bands are equipped with a variety of high-precision sensors that support novel contextual and activity-based applications. The presence of a diverse set of on-board sensors, however, also expose an additional attack surface which, if not adequately protected, could be potentially exploited to leak private user information. In this paper, we investigate the feasibility of a new attack that takes advantage of a wrist-wearable's motion sensors to infer input on mechanical devices typically used to secure physical access, for example, combination locks. We outline an inference framework that attempts to infer a lock's unlock combination from the wrist motion captured by a smartwatch's gyroscope sensor, and uses a probabilistic model to produce a ranked list of likely unlock combinations. We conduct a thorough empirical evaluation of the proposed framework by employing unlocking-related motion data collected from human subject participants in a variety of controlled and realistic settings. Evaluation results from these experiments demonstrate that motion data from wrist-wearables can be effectively employed as a side-channel to significantly reduce the unlock combination search-space of commonly found combination locks, thus compromising the physical security provided by these locks

    Mechanism and Enantioselectivity in Palladium-Catalyzed Conjugate Addition of Arylboronic Acids to β‑Substituted Cyclic Enones: Insights from Computation and Experiment

    Get PDF
    Enantioselective conjugate additions of arylboronic acids to β-substituted cyclic enones have been previously reported from our laboratories. Air- and moisture-tolerant conditions were achieved with a catalyst derived in situ from palladium(II) trifluoroacetate and the chiral ligand (S)-t-BuPyOx. We now report a combined experimental and computational investigation on the mechanism, the nature of the active catalyst, the origins of the enantioselectivity, and the stereoelectronic effects of the ligand and the substrates of this transformation. Enantioselectivity is controlled primarily by steric repulsions between the t-Bu group of the chiral ligand and the α-methylene hydrogens of the enone substrate in the enantiodetermining carbopalladation step. Computations indicate that the reaction occurs via formation of a cationic arylpalladium(II) species, and subsequent carbopalladation of the enone olefin forms the key carbon–carbon bond. Studies of nonlinear effects and stoichiometric and catalytic reactions of isolated (PyOx)Pd(Ph)I complexes show that a monomeric arylpalladium–ligand complex is the active species in the selectivity-determining step. The addition of water and ammonium hexafluorophosphate synergistically increases the rate of the reaction, corroborating the hypothesis that a cationic palladium species is involved in the reaction pathway. These additives also allow the reaction to be performed at 40 °C and facilitate an expanded substrate scope

    On the Effectiveness of Time Travel to Inject COVID-19 Alerts

    Get PDF
    Digital contact tracing apps allow to alert people who have been in contact with people who may be contagious. The Google/Apple Exposure Notification (GAEN) system is based on Bluetooth proximity estimation. It has been adopted by many countries around the world. However, many possible attacks are known. The goal of some of them is to inject a false alert on someone else’s phone. This way, an adversary can eliminate a competitor in a sport event or a business in general. Political parties can also prevent people from voting. In this report, we review several methods to inject false alerts. One of them requires to corrupt the clock of the smartphone of the victim. For that, we build a time-traveling machine to be able to remotely set up the clock on a smartphone and experiment our attack. We show how easy this can be done. We successfully tested several smartphones with either the Swiss or the Italian app (SwissCovid or Immuni). We confirm it also works on other GAEN-based apps: NHS COVID-19 (in England and Wales), Corona-Warn-App (in Germany), and Coronalert (Belgium). The time-machine can also be used in active attack to identify smartphones. We can recognize smartphones that we have passively seen in the past. We can passively recognize in the future smartphones that we can see in present. We can also make smartphones identify themselves with a unique number. Finally, we report a simpler attack which needs no time machine but relies on the existence of still-valid keys reported on the server. We observed the case in several countries. The attack is made trivial in Austria, Denmark, Spain, Italy, the Netherlands, Alabama, Delaware, Wyoming, Canada, and England & Wales. Other regions are affected by interoperability too

    A Threat for Tablet PCs in Public Space

    No full text
    corecore